Package: lmls 0.1.1
lmls: Gaussian Location-Scale Regression
The Gaussian location-scale regression model is a multi-predictor model with explanatory variables for the mean (= location) and the standard deviation (= scale) of a response variable. This package implements maximum likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x> and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric bootstrap algorithm, and diagnostic plots for the model class.
Authors:
lmls_0.1.1.tar.gz
lmls_0.1.1.zip(r-4.5)lmls_0.1.1.zip(r-4.4)lmls_0.1.1.zip(r-4.3)
lmls_0.1.1.tgz(r-4.4-any)lmls_0.1.1.tgz(r-4.3-any)
lmls_0.1.1.tar.gz(r-4.5-noble)lmls_0.1.1.tar.gz(r-4.4-noble)
lmls_0.1.1.tgz(r-4.4-emscripten)lmls_0.1.1.tgz(r-4.3-emscripten)
lmls.pdf |lmls.html✨
lmls/json (API)
NEWS
# Install 'lmls' in R: |
install.packages('lmls', repos = c('https://hriebl.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/hriebl/lmls/issues
- abdom - Abdominal circumference data
Last updated 9 days agofrom:16f8568877. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:bootglancelmlsmcmctidy
Dependencies:generics
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Abdominal circumference data | abdom |
Parametric bootstrap for LMLS | boot |
Gaussian location-scale regression | lmls |
Methods for LMLS | coef.lmls fitted.lmls lmls-methods predict.lmls residuals.lmls vcov.lmls |
MCMC inference for LMLS | mcmc |
Summary for LMLS | summary.lmls |